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SUMMARY 

In the structural design of civil aircraft the critical loads are often those encountered in a gust or atmospheric 
turbulence. The traditional ‘indicial’ solution is restricted to a simple plate. In this paper a finite element 
formulation is proposed for an aerofoil or arbitrary shape entering a uniform sharp-edged or sinusoidal gust. The 
thin rotational gust front and wake in an irrotational flow field are successfully modelled by a novel superposition 
technique. The finite element solutions are compared with the Kussner function and results by other numerical 
methods. The agreement is good. 
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1. INTRODUCTION 

Although the problem of a sinusoidally oscillating aerofoil has dominated unsteady aerodynamics 
because of its important application in flutter analysis, there are occasions in structural design of 
aircraft where the critical loads come from gust encounters. This is especially true for a civil aircraft, 
which only undergoes gentle manoeuvre in flight compared with its military counterpart.’ 

A simple model of atmospheric turbulence is a uniform vertical velocity profile travelling 
downstream at a speed U, + Ug (see Figure 1). The vertical velocities of the fluid particles on the 
left and right of the gust front have a difference equal to the gust intensity W,, which makes the gust 
front a vortex sheet of uniform strength. The part of the aerofoil already in the gust changes its 
effective incidence. As a result, the circulation around the aerofoil needs to be adjusted to satisfy the 
Kutta condition, which leads to the shedding of vortices into the wake according to Kelvin’s law. This 
process continues until the gust front approaches infinity and a steady state is thus reached. 

The stationary gust, which is a gust travelling at the same speed as the mean flow, was traditionally 
studied by the ‘indicial’ method as for the problem of aerofoil motion. Kussnei? first solved the 
problem of an aerofoil entering a uniform sharp-edged stationary gust, which was also addressed later 
by Von Karman and Sears3 in a more general context. Their solution methods were similar to that of 
The~dorsen.~ Once a response for the uniform sharp gust is obtained, the response for a gust of 
arbitrary shape can be determined by a convolution integral. 
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Figure 1 .  Uniform sharp-edged gust 

An approximate numerical method for the stationary uniform sharp-edged gust has been developed 
by Giesing' and Basu and Hancock.6 While Giesing assumed that the gust front remains straight and 
travels downstream at the freestream speed, Basu and Hancock represented the gust front with a 
uniform vorticity distribution and allowed it to be deformed. 

Although in practice the gust travelling speed U, relative to the wind speed is small and hence 
negligible, problems such as (i) an aeroplane or missile dropped from another plane, (ii) and 
aeroplane crossing the wake of or flying past another plane and (iii) a helicopter blade transversing 
the wake produced by itself or other blades of the rotor all imply a travelling gust.7 In order to 
calculate the gust loading and aerofoil response, one needs to be able to analyse the travelling gust. In 
this paper both the stationary and the travelling gust will be studied. One interesting comparison 
between a travelling gust and an impulsively started aerofoil is that when U, is infinite, the former 
equals the latter. Miles' first solved such a problem for a two-dimensional incompressible flow. The 
extension to wings in compressible and supersonic flows was carried out by Drischler and Diederich7 
through a different approach. 

Another kind of gust that needs to be considered in aircraft design is the sinusoidal gust. When 
finding the structural response to atmospheric turbulence, one needs to know both the forces due to 
harmonic aerofoil motion and the forces due to a sinusoidal gust.' While the former has been 
addressed by Shi and Hitchings," the latter is considered in the second part of this paper. 

The sinusoidal gust model comes from the power spectral density method, which represents a 
random atmospheric turbulence in the frequency domain. The component of the series is a sinusoidal 
gust field of a particular frequency. For a reliable analysis the number of frequencies has to be large,' ' 
typically of the order of 100. 

For the sinusoidal gust model (Figure 2) a vertical velocity field is superposed on a mean flow field. 
The intensity of the gust varies only in the mean flow direction. It remains constant in the 
perpendicular direction. The gust may travel at a different speed from U,, but this can be treated as a 

Figure 2. Sinusoidal gust 
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gust of modified fiequency.I2 As a result, only the stationary sinusoidal gust is discussed in this 
paper. 

Von Karman and Sears3 and SearsI3 first solved the problem analytically for a plate. A sinusoidal 
gust problem for an elliptical wing in an incompressible flow was tackled by Jones.I4 Subsonic and 
supersonic rectangular wings were addressed by Drischler.’ Garrick” found the relation between a 
uniform gust and a sinusoidal gust through Fourier transformation. An approximate method 
developed by Basu and HancockI2 was also used to solve a thick aerofoil immersed in a sinusoidal 
gust field. A modification to Sear’s function was made by Giesing et al.,” who established the 
feasibility of using a lifting surface technique for the analysis of one- or two-dimensional gust fields. 

Since a finite element application to the analysis of a uniform sharped-edged gust is lacking, a 
finite element formulation will be given in the next two sections for both the sharp-edged (stationary 
and travelling) and sinusoidal gusts. The formulation is based on the success of the finite element 
treatment of a thin vortex sheet in an irrotational flow field described in References 10, 16 and 17. 
The numerical results are presented in Section 4. 

2. FINITE ELEMENT FORMULATION FOR UNIFORM SHARP-EDGED GUST 

The sharp-edged gust problem (Figure 3) can be posed as 

v24 = 0 in R, 
a+/& = U, on a,, 

A 4  =f i ( s ,  t) on 3% 
a+/an = o on 
a4/an = W, or 0 on m4, 

A 4  =j&, t) on aSZ,, 

in which 4 is the velocity potential andfi and& are known functions. Only the part of tlQ4 on the left 
of the gust front has &$/at = Wg, while on the right = 0, where t and n denote tangential and 
normal directions on the boundary respectively. An obvious boundary condition on the gust front is a 
vertical velocity discontinuity W,. Such a condition cannot be readily incorporated into a finite 
element formulation, so it is replaced by the velocity potential difference condition as in previous 
papers 10,16,17 

To simplify the problem, the same assumptions as in References 10, 16 and 17 have been made for 
the wake, i.e. it remains straight and the wake front propagates downstream at the mean velocity. 
Regarding the gust front, it remains undeformed and travels at a constant speed U, + U . The 
solution techniques for the gust problem are similar to those for the aerofoil indicia1 motions,1g since 

for the wake. 

gust front 
arb -U.&Ug 

Figure 3. Definition of uniform sharp-edged gust problem 
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they are both transient problems involving a growing wake from the vortex shedding. The major 
differences are the presence of a rotational sharp-edged gust front and the time-dependent boundary 
condition on the outer horizontal boundaries. Thus a large part of the formulation in this section can 
be a direct copy of that in Reference 16 and only the modelling of the gust front is emphasized. Since 
the gust front has been idealized as two vertical semi-inhite thin vortex lines separated by the 
aerofoil and the wake, it can also be simulated by velocity potential differences. 

The total solution is decomposed into five subsolutions, 

where V 2 4 i  = 0 in R and 
on the other boundaries we have 

= 0 on aR, (i = 1, . . . , 5 ) ,  since the aerofoil is stationary. However, 

aq5lan on iKz, A 4  on XI, on iKz, A 4  on iKz, 

41 1 0 0 0 
4 2  0 fi 0 0 
4 3  0 f i  0 0 
44 0 0 0 .fi 
4 5  0 0 W, or 0 0 

where fi, f 2  and f3 are known and will be discussed next. On %2, only the part inside the gust has 
a4lan = Wg, otherwise a4lan = 0, where n is the normal of the boundary. 

The first time-independent part 41 corresponds to the mean incidence effect and is equal to +o in 
Reference 17. The modelling of the wake and vortex shedding is exactly the same as in Reference 16, 
e.g. here (62 and 43 are the equivalent of (p2 and 4, in Reference 16; fi and fi are thus defined 
accordingly. As a consequence, we will not repeat the detailed formulation. 

Here 4, is defined by the moving gust front. From Figure 4 we can derive the velocity potential 
difference between a pair of points on the left and right sides of the gust front by integrating the 
velocity Wg + V(y) on the left of the gust from 4R to the aerofoil 4a and then integrating the velocity 
V(y) on the right of the gust from the aerofoil 4a to &. Because we only have a gust velocity Wg on 
the left of the gust, in equation (2) is 

Gust front navel one element each time step 
I 

Gust front at t 

Figure 4. Gust front modelling 
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Similarly,fi for the lower half of the gust front can be found. As a result, we can replace the nodal 
velocity potential on one side of the gust front by the sum of their difference and the velocity 
potential on the other side. The consequent modification to the element matrix is exactly the same as 
for an element on the ~ a k e . ' ~ ~ ' ~ ~ ' '  

The last component 4' represents the upwash produced by the moving gust. Only the part of asZ4 
already reached by the gust front has a non-zero upwash. The three separate time-dependent solution 
components are retained merely for the purpose of clear illustration. They can in fact 
be combined into one quantity in the computer implementation to improve the solution efficiency. At 
the same time we want to emphasize that 4' and 42 are solved once only, since they do not vary with 
time. Moreover, the coefficient matrix is factored once only too. 

At the beginning of the time integration, t = 0, the gust front is at the leading edge. The circulation 
around the aerofoil is zero and the length of the wake is also zero. The flow is made up of the mean 
flow 41 and the gust terms 44 and 4'. At the end of the first time step a vortex is added to the flow. 
These vortices later form the wake. Within each time step [ t , - ] ,  f,] the gust front (44) is made to 
travel one element length I,, while the wake (43) at tn-' moves a distance As = leUm/(Um + Ug) 
with a newly shed vortex 42 added to the wake. The vortex shedding is modelled slightly differently 
from that in Reference 16, where the wake front moves one element length in each time step, because 
now the time step size is controlled by the advance of the gust front. When the gust front reaches the 
downstream mesh boundary, it can either be neglected or remain there, because the mesh boundary is 
so far from the aerofoil that the influence of the gust front is trivial or a steady state has been reached. 

The circulation increment A r t  (r, = TtP1 + AT,) in (2) is determined from the classical Kutta 
condition' 

$ J ~  and 

where the superscript TE denotes the trailing edge of the aerofoil. Other forms of trailing edge 
conditions are possible, eg. one can enforce zero pressure difference or make the tangential velocity 
difference equal to the vorticity.'o In the transient analysis' it was found that the results are not 
particularly sensitive to the special trailing edge condition used. Moreover, in this paper we are 
mainly concerned with aerofoils of sharp trailing edge, hence we simply adopt the form of equation 

As in Reference 16, the velocities can be found by differentiating 4 in equation (2) with respect to 
(4). 

x andy as 

and the pressure is 

The subscript (and superscript) n or n - 1 denotes solution at time step n or n - 1. The first-order 
explicit backward difference scheme has been adopted for the approximation of the time derivative of 
the velocity potential. Second-order terms in velocities, except the mean flow, have been neglected as 
in Reference 16. The lift and moment resultants can be calculated by integrating the pressure around 
the aerofoil as in Reference 16. 
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3. FINITE ELEMENT FORMULATION FOR SINUSOIDAL GUST 

Unlike the uniform gust problem, the superposition of a sinusoidal gust on a mean flow results in a 
rotational flow in the whole field, which means that the governing equation is no longer the familiar 
Laplace equation. However, owing to the special characteristic of this rotational flow field, i.e. the 
curl of the velocity is only a function of x ,  

so we can replace the continuous rotational flow field by a number of vertical discrete vortex lines of 
a ‘consistent’ strength. These lines are positioned at the boundary of two adjacent vertical columns of 
elements. This is because, in the finite element context, the only perceivable way of simulating a 
vortex sheet in an irrotational flow field is by applying a velocity potential difference between two 
layers or columns of elements. Here ‘consistent’ means that the vertical velocity difference between 
two points at some distance apart in the x-direction is the same in both the discrete and the continuous 
vortex system. The convenient distance for the present finite element formulation is defined as half 
the sum of the side lengths of the two streamwise neighbouring elements. There are, however, other 
choices available (see Figure 5), but Figure 5(a) is certainly the best of the three. As for fixed time 
step sizes, Figure 5(a) reproduces the original gust function W most closely, while Figures 5(b) and 
5(c) under- or over-approximate the gust profile W respectively. To put this in another way, we use a 
series of step changes to approximate the original smooth gust intensity profile. As we can see, 
between these vortex lines we have a constant gust velocity distribution and there is a jump in gust 
velocity at the element boundaries. Thus the flow is irrotational in each column of elements and 
rotational at their boundaries. It can also be said that the initial rotational flow field is replaced by 
vertical finite irrotational strips divided by concentrated vortex lines, the strengths of which depend 
on the difference in velocities on the left and right of the vortex lines. Obviously, the more element 
columns we have, the better is the approximation to the gust field. 

After the above simplification the governing equations and boundary condition are 

where fi and A are known functions which will be explained in more detail later and asZ, is the 
boundary formed by the discrete vortex lines. 

(a) (b) (d 

Figure 5. Different approximation schemes for sinusoidal gust 
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Like the problem of the oscillating aerofoil," we are again treating the sinusoidal gust as a steady 
state problem in the frequency domain (Figure 6). The initial transient due to the aerofoil entering the 
gust field is not considered, since this can be dealt with by the method developed in the previous 
section. In contrast, the aerofoil is thought to have been in the gust for so long that a steady state has 
been reached. The alternating gust changes the upwash on the aerofoil periodically, which results in a 
corresponding change in the effective incidence. This leads to a constant flow adjustment at the 
trailing edge in order to satisfy the Kutta condition and the vortex shedding, which in turn produces 
an oscillation of the pressure on the aerofoil. 

Under the small-disturbance assumption and since the mechanism of vortex shedding and wake 
development for the present problem is similar to that for the oscillating aerofoil, the same 
assumption can be made about the wake and the circulation on the aerofoil. 

1. The circulation r = To + rl sin(wt) + r2 cos(wt). 
2. The wake is straight, infinitely thin and aligned with the freestream flow directions. Vortices are 

Hence the wake modelling for the oscillating aerofoil in Reference 10 can be used here for the 
sinusoidal gust. On the other hand, each of the vertical concentrated vortex lines is in fact a gust front 
as analysed in the previous section. Thus they can be simulated in the same manner. The only 
difference is that instead of one vortex line travelling downstream element-by-element, we have 
stationary vortex lines between every two neighbouring columns of elements. 

convected along it at the freestream velocity. 

To solve the above problem, $ is resolved into 

$ = (44 + r0$3) + ($7 + $6 + rld)l + r2&!)sin(ot) + ($8 + $ 5  - r l$ l  + r242)cos(wt)- (9) 

where V2& = 0 in Q, a$Jan = 0 on m3 (i = 1,2, . . . , 8 )  and 

41 
4 2  

43 
44 
4 5  

4 7  

46 

4 8  

0 0 sin(ws) 0 
0 0 cos(ws) 0 
0 0 1 0 
VW 0 0 0 
0 - Wg0 cos(ox/ V,) sin(wt) 0 0 

Wpo sin(wx/U,) cos(wt) 0 0 
0 0 Ad1 0 
0 0 A42 0 

The same assumptions as in Reference 10 have been made for the circulation around the aerofoil 
and the wake. Hence, following the same line of thought, we can find the velocity potential difference 
cfi in equation (8)) in the wake and separate it into three parts: time- independent, &, in-phase, $2, 

a 2  I 
Figure 6. Problem definition of sinusoidal gust 
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and out-of-phase, dZ7 components." The component 44 represents the mean flow, while q55 and 4 6  

come from the boundary condition on aS2,, namely 
Wgo sin[w(x/U, - t)] = Wgo[sin(ox/U,) cos(ot) - cos(wx/U,) sin(ot)]. (10) 

The last two components 4, and 4 8  are there to simulate the discrete vortex lines. The prescribed 
functionsfi and f 2  in equation (9) are 

A41 = -wgo[cos(ox2/U,) - coS(wx1 /U,)k, A& = wgo[sin(ox2/U,) - sin(oxl /U,)k. 
(1 1) 

This is because the gust velocity difference between x2 and x1 is 
Wgo sin[o(x2/U, - t)] - Wgo sin[o(xl/U, - t)]  

= -[cos(ox2/U,) - cos(oxl / U , ) ]  sin(wt) + [sin(ox2/U,) - sin(oxl /Urn)] cos(ot), (12) 

where x2 and x1 are the x-co- ordinates of the midside nodes of two adjacent elements. 
The velocities are 

(13) 
u = (u4 + r,,u3) + (u7 + u6 + r lu2  + r2u1) sin(wt) + (U8  + u5 - r , U l  + r2u2) cos(ot), 
v = (v4 + ~ 0 ~ 3 )  + (v7 + 2)6 + r , ~ ,  + r2v1)  sin(ot) + ( v 8  + v5 - r l v l  + r2v2) COS(W~), 

As in Reference 10, the smooth flow condition is adopted at the trailing edge. If we apply this 
condition to equation (12), we now have 

(v;fE + row;E) + (vTE + w i E  + r l U T E  + r2VTE) sin(ot) + (v;fE + vTE - rlvTE + r2viE)  COS(U~> = 0. 

(14) 
As discussed in the last section, other forms of trailing edge conditions are possible, but for the cases 
in which we are interested, the above condition is sufficient. To satisfy equation (14) at any time 
instant, we need 

wIE + rot$E = 0, 

.;fE + .TE - r,wTE + r2vlE = 0,  
+ viE + + r22;fE = 0, (15) 

Lift and moment resultants can be calculated as in Reference 10. 
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4. NUMERICAL EXAMPLES AND DISCUSSION 

Stationary Gust 

To validate the above theory, a calculation has been performed on a stationary gust passing a plate 
and an 8.4 per cent thick von Mises aerofoil. The results are shown in Figure 7 and 8. The present 
method provides an accurate prediction of the time history of the non-dimensionalized lift on a plate, 
particularly when the time increment is small and the finite element mesh is large. Figure 7 clearly 
demonstrates that the discrepancies at large time values are caused by numerical blockage effects. In 
other words, because we are using a finite mesh for an infinite problem, special  treatment^'^ such as 
geometric mapping,' combining with a boundary integral method, l9 asymptotic matching:' finite 
elements*' and absorbing boundary conditions22 are required to model the response at large times. 
However, they have not been considered here, since they are not the main interest of the paper. Figure 
8 shows large differences between the finite element solution and that of Basu and Hancock? which 
may be the result of the large time step employed in the present analysis. Basu and Hancock used 
very small time increments in their solution (U,At/C x lop4), while in the present formulation the 
gust front has to travel at least one element in each time step. The different forms of the Kutta 
conditions used can also be the reason for the disagreement. 

For both the above cases there is a sudden change in lift when the gust front passes through the 
trailing edge or when U , t / C  x 1. According to Basu and Hancock; this is a consequence of 
neglecting the wake deformation. However, they believe that the time step size is at least another 
factor, since, as illustrated in Figure 7, when a finer mesh (i.e. smaller time steps) is employed, this 
sudden change is reduced. 

Travelling gust 

The finite element results for the travelling gust approaching from both the leading edge and the 
trailing edge of a plate are given in Figures 9-12. They are apparently different from the stationary 
normalized lift coefficient curve. One of the distinctive features is that the lift coefficient peaks when 
I Up I > 1 , and the higher the relative gust speed U,, the sharper and stronger the peak is. Another 
interesting thing is that the sudden change in lift that happens with the stationary gust has now 

Figure 7. Plate entering a sharp-edged gust: ~ , analytical; - - - -, finite element (small mesh); 0, finite element 
(large mesh) 
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Figure 8. 8.45 thick symmetrical von Mises aerofoil entering a sharp-edged gust: ~ , analytical; - - - -, finite element 

disappeared. On the whole the finite element solutions are quite acceptable when the time is small, 
but they differ considerably from the analytical solution7 later on. As in the previous cases, this is 
thought to be due to the numerical blockage effect, which seems to be more profound when the gust is 
travelling relative to the mean flow. 

Thickness effect 

The effect of aerofoil thickness on the response to a gust is again studied by comparing the time 
history of the non-dimensionalized lift coefficient of a symmetrical Joukowski aerofoil for thickness- 
to-chord ratios equal to 0 per cent, 5 per cent and 10 per cent. As can be seen in Figure 13, the thicker 
aerofoil has a smaller lift at the same time instant. Putting this in another way, it means that a thicker 
aerofoil needs a longer time to reach a steady state, which agrees with Giesing's  finding^.^ 

""I 

0.20 . . - i 1 
U-VC 

1 

Figure 9. Travelling gust approaching from leading edge of plate, U,/U, = 1.0: ~ , analytical; - - - -, finite 
element 
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Figure 10. Travelling gust approaching from leading edge of plate, UJUm = -0.5: ~ , analytical; - - - -, finite 
element 

Sinusoidal gust 

The lift coefficients of a plate and an 8.4 per cent thick symmetrical von Mises aerofoil immersed 
in a sinusoidal gust field are shown in Figure 14 and 15. As far as the plate is concerned, the finite 
element solution agrees fairly well with the exact solution, except for the out-of-phase lift coefficient 
at low reduced frequencies. 

As before, the finite element solution shows a less satisfactory agreement with that of the panel 
method for the 8.4 per cent von Mises aerofoil. The reasons are believed to be the same: the mesh 
size and density, the form of the Kutta condition employed and the artificial reflection at boundaries. 

_____-- ----- __-__-_------- 

1 1 ib 
u,uc 

Figure 1 1. Travelling gust approaching from trailing edge of plate, Ug/CJm = - 1.5: ~ , analytical; - - - -, finite 
element 
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0.1 1 

Figure 12. Travelling gust approaching from trailing edge of plate, Ug/Um = -3.0: ~ , analytical; - - - -, finite 
element 

5 .  CONCLUSIONS 

In this paper a finite element formulation for both the stationary and the travelling uniform sharp- 
edged gust has been developed and tested for a number of cases for which analytical solutions are 
available. The effect of thickness on the gust loading has also been studied. A large part of the 
simulation (especially for the wake) has been borrowed directly from our previous papers. 10,16,17 The 
novel phenomenon for the present gust problem is the existence of a moving gust front. Because it 
has been idealized as a vortex sheet, the gust front can also be modelled by a distribution of velocity 
potential difference as has been done for the wake. Since a gust of arbitrary profile can be 
approximated by the sum of uniform sharp-edged gusts, the present formulation can handle a gust of 
arbitrary intensity. This can be realized by placing an appropriate number of vortex lines or gust 

Figure 13. Thickness effect on Kussner function: ~ , plate; 0, 5% thick; A, 10% thick 
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-I.awJ 

Figure 14. Response of plate to sinusoidal gust: ~ , analytical; - - - -, finite element 

Figure 15. Response of 8.4 per cent thick symmetrical von Mises aerofoil to sinusoidal gust: ~ , analytical; - - - -, 
finite element 

Figure 16. Substructure model for large wake deformation 
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fronts in the flow field instead of just one gust front. These gust fronts have to travel the same distance 
within each time step. 

To simplify the problem, a number of assumptions have been made to achieve a linearized 
problem. For example, the wake (and the gust front) was assumed to be straight. However, this 
assumption can be removed and those elements close to the wake can be allowed to deform with it, 
which suggests that the solution must be carried out in the time domain and the element matrices have 
to be reformed at each time step. Since only those elements next to the wake need to have finite 
displacements to trace the wake distortion, they can be treated as a substructure (Figure 16). The 
element matrix reformulation is done only in this part, while the rest of the elements make up another 
substructure and their matrices remain unchanged. This, nevertheless, is still unable to model a severe 
wake distortion such as vortex roll-up. 
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